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The Main Eigenvalues of the Seidel Matrix

HouQiNng ZHOU®

ABSTRACT. Let G be a simple graph with vertex set V(G) and (0, 1)-
adjacency matrix A. As usual, A*(G) = J — I — 2A denotes the Seidel
matrix of the graph G. The eigenvalue A\ of A is said to be a main
eigenvalue of G if the eigenspace €()) is not orthogonal to the all-1
vector e. In this paper, relations between the main eigenvalues and
associated eigenvectors of adjacency matrix and Seidel matrix of a graph
are investigated.

1. INTRODUCTION

Let G be a simple graph with n vertices. We write V(G) for the vertex
set of G, and E(G) for the edge set of G. The spectrum of the graph
G consists of the eigenvalues A\; > Ao > --- > A, of its (0,1) adjacency
matrix A = A(G) and is denoted by o(G). The Seidel spectrum of G
consists of the eigenvalues A\ > A5 > --- > X\* of its (0,—1,1) adjacency
matrix A* = A*(G) and its denoted by o*(G). Let Pg(\) = |AI — A
and P (A\) = |A] — A*| denote the characteristic polynomial and the Seidel
characteristic polynomial, respectively.

For a real symmetric matrix A, an eigenvalue of A is called simple if
its algebraic multiplicity is one, and the eigenvalue A of A is said to be a
main eigenvalue of G if the eigenspace (\) is not orthogonal to the all-1
vector e. Any real symmetric matrix A has at least one main eigenvalue.
Furthermore, matrix A has exactly one main eigenvalue if and only if the
vector e = (1,1,...,1)T is an eigenvector of A. For a graph G, its main
eigenvalues are those of A(G), and G has exactly one main eigenvalue if and
only if G is a regular graph. There are many results and their applications on
the main eigenvalues of graphs, see[1],[2],[3],[4],[6],[7], but it is still an open
problem to characterize the graphs with exactly /(I > 3) main eigenvalues(as
the case | = 2 has been settled, see [4],[5]). It is well known that if the graph
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G is r-regular graph, in other words, G has exactly one main eigenvalue,
then( [1] p. 30)

w Ay nen A+ 14+2r —n A+1
(1.1) Pi(A) = (—1)"2 T iror Pg( 5 >

Hence the Seidel spectrum of regular graph is determined by its adjacency
spectrum.

The aim of this paper is to prove that the main Seidel eigenvalues of
a graph are recoverable by the main eigenvalues of adjacency matrix and
associated eigenvectors and give a method for computing the main Seidel
eigenvalues in terms of the main eigenvalues and associated eigenvectors of
adjacency matrix.

The rest of the paper is organized as follows. In Section 2 contains some
definitions. In Section 3 we will describe the relation between main eigen-
values of G and main eigenvalues of A*(G), and prove several theorems on
the main eigenvalue of graphs.

2. SOME BASIC NOTIONS

Let A have spectral decomposition
(2.1) A= Pr+ poPo+ -+ b Py
The main angles of G' are the numbers 1, 3s,. .., Bm, where 3; = ﬁHPieH

(1t = 1,2,...,m). These are the cosines of the angles between e and the
eigenspaces of A, and so y; is a main eigenvalue if and only if 3; # 0. Since
lell? = >, || Pie||?, we have .7, 32 = 1. The main eigenvalues include
the index (largest eigenvalue) of G because there exists a corresponding
eigenvector with no negative entries, see [1].

We take the main eigenvalues of G to be uq, pa, . . ., ts, with g the index
of G; no further ordering is assumed for pa, s, ..., is.

First, we introduce some notation and preliminaries which will be useful
to obtain the main results.

It is not difficult to see the following lemmas:

Lemma 2.1. (see [1]) The relation between the characteristic polynomial
Pg(X\) of a graph G and the characteristic polynomial P5(N) of the Seidel
adjacency matriz A*(G) of G can be written in the form
(-1)" P5(-2A-1)

n 1+ %Hg(%)
Lemma 2.2. (see [9]) If Nj, denotes the number of walks of length k in G,
then

(2.2) Pa(A) =

S
Ni, = nZMf,BZQ

i=1
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According to [1], the walk generating function Hg(t) is defined by
He(t) = 32028 Nitk, and it follows from Lemma 2.2 that

S

23) o) =3

o Lt

Using above lemma, we see that the main eigenvalues of A*(G) are deter-
mined by the main eigenvalues of G.

3. MAIN RESULTS

We proceed now to the investigation of the main Seidel eigenvalues of a
graph G. We shall apply above lemma and a result from [1], the following
result is immediately obtained.

Theorem 3.1.

s 2
(3.1) PEO) = (2" Pe(- 2T hya 5;

2 izl/\+1+2m)'

Proof. According to (2.2) and (2.3), by a straightforward calculation, hence
we have (3.1). O

Note that A*(G) = J — I —2A(G), where the symbol J denotes a square
matrix all of whose entries are equal to 1, I means a unit matrix in general,
respectively. If « is an eigenvector of A(G) with eigenvalue p such that
e’'a = 0, then « is also an eigenvector of A*(G) with eigenvalue —1 — 24,
since A*(G)a = (J — I —2A(G))a = Ja—a —2A(G)a = (=1 —2p)a. In
other words, the non-main eigenvalues of A*(G) are determined by those of
A(G). Using this fact, we can simplify Equation (3.1) so that it involves only
the main eigenvalues p, pa, ..., pus and A7, A3, ..., A% of A(G) and A*(G),
respectively, i.e.

S S S
(3.2) 1:[()\—)\;*) :1:[()\+1+2u¢)(1—n2 m)
i=1 i=1 =1

Using Equation (3.2) for both A(G) and A*(G), we can see the main
eigenvalues of A*(G) are determined by the main eigenvalues and corre-
sponding eigenvector of A(G). But we can say more.

Theorem 3.2. Suppose that py, is a main eigenvalue of A(G), then —1—2puy
cannot be a main eigenvalue of A*(G).

Proof. By evaluating Equation (3.1) at —1 — 2uy, we have

s . s s 52
12— AY) = 28 i) (1 —n ST,

Hence for i = 1,2,...,8, A # —1 — 2uy,. O
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For example, if G is the cycle Cy4 then its the main eigenvalue is 2, via cal-
culation, show that —5 is non-main eigenvalue of A*(G), its main eigenvalue
is 3.

A consequence of this theorem is the following,.

Corollary 3.3. Suppose that pu is a simple main eigenvalue of A(G). Then
—1—-2u ¢ o*(G).
Now, we give the following lemma.

Lemma 3.4. Let i € o(G). Then —1 —2u € 0*(G) if and only if eTa =0
for some eigenvector a corresponding to the eigenvalue p of A(G).

Proof. Sufficiency follows from the Theorem 3.1.

To prove necessity. Assume that —1—24 € 0*(G) and note that p cannot
be simple main eigenvalue of A(G) by Corollary 3.3. By Theorem 3.2,
—1 —2p is not a main eigenvalue of A*(G). Thus A*(G) has an eigenvector
a corresponding to —1 — 2u such that e”’a = 0 and « is also an eigenvector
of A(G) corresponding to . O

Next, we present the main result of this note that the main eigenvalues
and associated eigenvectors of A*(G) are recoverable from those of A(G).

Theorem 3.5. Let u1, o, ..., us be the main eigenvalues of the graph G,
and let a1,ao,...,as be corresponding orthonormal eigenvectors. Let E
be the s x s matriz whose (i,j)-entry is el aela;, and let M = E — I —
2diag(p1, pay .-, ps). Then eigenvalues of M are precisely the main eigen-
values of A*(G). Moreover, if ¢ = (ci,ca,...,c5) is an eigenvector of
M corresponding to the eigenvalue N*, then Y ;| cioy is an eigenvector of
A*(Q) corresponding to \*.

Proof. Let A* be a main eigenvalue of A*(G) with the corresponding eigen-
vector a*. Since any eigenvector a of A(G) such that e’a = 0 is also an
eigenvector of A*(G) and vice versa, two spaces spanned by the eigenvectors
of A(G) and A*(G) the sum of whose entries is zero are identical. Equiva-
lently, the eigenvectors associated with the main eigenvalues of A*(G) span
the same space as that of A(G). Thus we can express o as a linear com-
bination of eigenvectors a1, ag, ..., as, o = > | ¢o;. Hence A(G)a* =
Sl cipicy. As A(G) = 3(J — 1 — A*(G)), so A(G)a* = (J —a* — X*a*).
Thus Ja* = 2A(G)X* + (1 + A*)a*. Combining above two expressions we
get

S
(ea*)e=(e"e)a” = Ja* =) c(2u + 14 X\%).
i=1
Taking the scalar product of both side with «;,7 =1,2,...,s. We obtain

(3.3) elae’a; = che aiel oy = (2u; + 14+ X ).
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In matrix form, the set of equations represented by (7) is

(E e 2diag(:“‘17,“27 s 7”8))0 = \ec.

Thus A* is an eigenvalue of M with corresponding eigenvector c,
and Theorem follows. O

Similarly, the main eigenvalues and associated eigenvectors of A(G) are
recoverable from those of A*(G).

Theorem 3.6. Let A}, \3,...,\] be the main eigenvalues of A*(G) and
aj,as, ..., a;f be the associated orthonormal eigenvectors. Let E be the | x
matriz whose (i,j)-entry is eTafeTa;, and M* = J(E—I—diag(\}, N3, ..., A)).
Then eigenvalues of M* are precisely the main eigenvalues of A(G). Fur-
ther more, if b= (b7, b5, . .. ,bZ‘)T is an eigenvector that corresponding to an
eigenvalue p* of M*, then Zé-:l bjas is an eigenvector of A(G) correspond-
ing to u*.

From Equation (1) we have 2A\; + \] = n — 1 for regular graph. The
following is a generalization of this fact.

Corollary 3.7. Let A1, Aa, ..., Ay and AT, A3, ..., AT are all main eigenvalues
of A(G) and A*(G), respectively. Then
l

@M+ =n—1

i=1
Proof. Since A}, A3, ..., A] are all eigenvalues of matrix M in Theorem 5,
we get
l ! !
Z A = trace(M) = Z(eTai)Q —1- Z 2\
i=1 i=1 i=1
! !
= Z n; — [ — Z 2)\1
=1 i=1
l
=n—1-) 2\
i=1
Hence Corollary follows. O

From Theorem 3.5. we know that if A(G) has few main eigenvalues then
the main eigenvalues of A*(G) can be obtained easily. The following is an
example.

Example 3.8. Let G = G1|J G2 be the union of two regular graphs Gy
and G of order n; and ny and degree r; and ra(r1 # 72), respectively. It
is easy to see that A(G) has exactly two main eigenvalues r and 7o and
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ny
. . 1 / N T
ociated orthonormal eigenvector are a; = \/TT(L 1,...,1,0,...,0)" and
n2
———
= ﬁ(o,...,o,m,...,l)? Thus

M = ny — 1-— 27’1 A/ M1N2 .
\/m ng — 1 —2ry

Hence two main eigenvalues of A*(G) are

wh
A

1]

[4]

[5]

[9]

., nitng—2-2r —2ry£VA
1,2 — )
, 2

ere

=[n1+mn2—2-2(r + 7“2)]2 —4[(n1 —1—=2r1)(n2 — 1 — 2r9) — ningl.
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